105 research outputs found

    Assessment of the risks associated with the invasive weed Ambrosia artemisiifolia in urban environments in Romania

    Get PDF
    Ambrosia artemisiifolia (ragweed) is an invasive weed with rapid spread during the last decades in many European countries, representing an important problem for environment and for public health, due to its highly allergenic pollen. Data from the European Aeroallergen Network (EAN) confirm the continuous increase of infested areas and of the amospheric ragweed pollen load. Ambrosia is responsible for significant health and economic impact in the most infested areas from Central Europe, mainly Hungary and neighbouring countries, including Romania. Despite generally occurring in dry and abandoned fields, along railways and roadsides, Ambrosia is now recognized as part of urban vegetation in some big cities, contributing to increase risk of air pollution and of respiratory diseases. The aim of our paper is to review the data regarding spread and problematic of Ambrosia in some big cities of Romania, mainly the capital and the actual public activities undertaken to reduce its consequences. Our data showed that Ambrosia is a real and increasing danger for human health in Romania, mainly due to its rapid spread in urban environment and increasing number of affected persons. There is an urgent need for more coordinated efforts and sustainable management of this problem, to reduce impact of Ambrosia in urban environment, to establish a national aerobiology network and to continue collaboration with European institutions and specialists in this field

    Release of Bet v 1 from birch pollen from 5 European countries. Results from the HIALINE study

    Get PDF
    Exposure to allergens is pivotal in determining sensitization and allergic symptoms in individuals. Pollen grain counts in ambient air have traditionally been assessed to estimate airborne allergen exposure. However, the exact allergen content of ambient air is unknown. We therefore monitored atmospheric concentrations of birch pollen grains and the matched major birch pollen allergen Bet v 1 simultaneously across Europe within the EU-funded project HIALINE (Health Impacts of Airborne Allergen Information Network). Pollen count was assessed with Hirst type pollen traps at 10 l min 1 at sites in France, United Kingdom, Germany, Italy and Finland. Allergen concentrations in ambient air were sampled at 800 l min 1 with a Chemvol high-volume cascade impactor equipped with stages PM > 10 mm, 10 mm > PM > 2.5 mm, and in Germany also 2.5 mm > PM > 0.12 mm. The major birch pollen allergen Bet v 1 was determined with an allergen specific ELISA. Bet v 1 isoform patterns were analyzed by 2D-SDS-PAGE blots and mass spectrometric identification. Basophil activation was tested in an Fc 3R1-humanized rat basophil cell line passively sensitized with serum of a birch pollen symptomatic patient. Compared to 10 previous years, 2009 was a representative birch pollen season for all stations. About 90% of the allergen was found in the PM > 10 mm fraction at all stations. Bet v 1 isoforms pattern did not vary substantially neither during ripening of pollen nor between different geographical locations. The average European allergen release from birch pollen was 3.2 pg Bet v 1/pollen and did not vary much between the European countries. However, in all countries a >10-fold difference in daily allergen release per pollen was measured which could be explained by long-range transport of pollen with a deviating allergen release. Basophil activation by ambient air extracts correlated better with airborne allergen than with pollen concentration. Although Bet v 1 is a mixture of different isoforms, its fingerprint is constant across Europe. Bet v 1 was also exclusively linked to pollen. Pollen from different days varied >10-fold in allergen release. Thus exposure to allergen is inaccurately monitored by only monitoring birch pollen grains. Indeed, a humanized basophil activation test correlated much better with allergen concentrations in ambient air than with pollen count. Monitoring the allergens themselves together with pollen in ambient air might be an improvement in allergen exposure assessmen

    Tackling Ragweed: a multidisciplinary and international approach

    Get PDF
    This paper contains the Final program and the Book of Abstracts of the World Conference of the International Ragweed Society, that was held on 8th-9th September, 2022, in Budapest, Hungary

    Human exposure to allergenic pollens: A comparison between urban and rural areas

    Get PDF
    Background: Pollinosis is found more frequently in urban areas than in rural environments. This could be partly related to the different types of pollen exposure in these dissimilar areas. The objective of this study was to compare the distribution of pollen in these environments across an urbanization gradient. Methods: Daily pollen abundances were obtained in France using Hirst-type sensors. Sampling was conducted from January to June in 2003 and 2006 in a rural area, a semi-rural area and in two urban areas, which were characterized by several urbanization criteria. Results: Total allergenic pollen abundance was higher in rural and semi-rural areas than in urban areas irrespective of the sampling year. Multivariate analyses showed that pollen exposures differed according to the type of area and were strongly explained by the urbanization gradient. Grass, ash, birch, alder, hornbeam, hazel and plantain pollen quantities exceeded the allergy threshold more often in rural settings than in urban areas. In urban areas, only plane pollen quantities exceeded the allergy threshold more often than in rural areas. Conclusions: Allergenic pollen exposure is higher in rural areas than in urban areas, and the most abundant pollen in each area did not originated from the same taxa. This result should be taken into account in epidemiological studies comparing allergies in rural and urban areas to adapt the panel of pollen extracts for human environmental exposure. In addition, this study highlights that some ornamental trees produce a large number of allergenic pollens and provide new sources of aeroallergens. © 2011 Elsevier Inc

    Estimating economic benefits of biological control of Ambrosia artemisiifolia by Ophraella communa in southeastern France

    Get PDF
    The North American common ragweed, Ambrosia artemisiifolia, which produces highly allergenic pollen, is invasive in different parts of the world, including Europe. In 2013, common ragweed in northern Italy was found attacked by another accidentally introduced species, the North American leaf beetle Ophraella communa, which is used for biological control of common ragweed in China. Since the establishment of O. communa, ragweed pollen concentrations in northern Italy have significantly dropped. Here we set out to estimate the potential economic benefits of establishment of O. communa in the Rhîne-Alpes region in south-eastern France, where detailed data on the economic impact of common ragweed are available. Extrapolating from the change in airborne ragweed pollen concentrations in the Milan area, we estimated that establishment of O. communa in the Rhîne-Alpes region will reduce the number of days with ragweed pollen concentrations at which sensitive people express symptoms by 50% and the medical costs due to common ragweed by 5.2–6.8 M € annually. Our findings suggest that investments of public funds are justified to conduct a complete assessment of the potential risks and benefits associated with the accidental establishment of O. communa in Europe

    Pollen season is reflected on symptom load for grass and birch pollen-induced allergic rhinitis in different geographic areas—An EAACI Task Force Report

    Get PDF
    Background: The effectiveness of allergen immunotherapy (AIT) in seasonal allergic rhinitis (AR) depends on the definition of pollen exposure intensity or time period. We recently evaluated pollen and symptom data from Germany to examine the new definitions of the European Academy of Allergy and Clinical Immunology (EAACI) on pollen season and peak pollen period start and end. Now, we aim to confirm the feasibility of these definitions to properly mirror symptom loads for grass and birch pollen-induced allergic rhinitis in other European geographical areas such as Austria, Finland and France, and therefore their suitability for AIT and clinical practice support. Methods: Data from twenty-three pollen monitoring stations from three countries in Europe and for 3 years (2014-2016) were used to investigate the correlation between birch and grass pollen concentrations during the birch and grass pollen season defined via the EAACI criteria, and total nasal symptom and medication scores as reported with the aid of the patient's hay-fever diary (PHD). In addition, we conducted a statistical analysis, together with a graphical investigation, to reveal correlations and dependencies between the studied parameters. Results: The analysis demonstrated that the definitions of pollen season as well as peak pollen period start and end as proposed by the EAACI are correlated to pollen-induced symptom loads reported by PHD users during birch and grass pollen season. A statistically significant correlation (slightly higher for birch) has been found between the Total Nasal Symptom and Medication Score (TNSMS) and the pollen concentration levels. Moreover, the maximum symptom levels occurred mostly within the peak pollen periods (PPP) following the EAACI criteria. Conclusions: Based on our analyses, we confirm the validity of the EAACI definitions on pollen season for both birch and grass and for a variety of geographical locations for the four European countrie

    Temperature-related changes in airborne allergenic pollen abundance and seasonality across the northern hemisphere : a retrospective data analysis

    Get PDF
    BACKGROUND: Ongoing climate change might, through rising temperatures, alter allergenic pollen biology across the northern hemisphere. We aimed to analyse trends in pollen seasonality and pollen load and to establish whether there are specific climate-related links to any observed changes. METHODS: For this retrospective data analysis, we did an extensive search for global datasets with 20 years or more of airborne pollen data that consistently recorded pollen season indices (eg, duration and intensity). 17 locations across three continents with long-term (approximately 26 years on average) quantitative records of seasonal concentrations of multiple pollen (aeroallergen) taxa met the selection criteria. These datasets were analysed in the context of recent annual changes in maximum temperature (T) and minimum temperature (T) associated with anthropogenic climate change. Seasonal regressions (slopes) of variation in pollen load and pollen season duration over time were compared to T, cumulative degree day T, T, cumulative degree day T, and frost-free days among all 17 locations to ascertain significant correlations. FINDINGS: 12 (71%) of the 17 locations showed significant increases in seasonal cumulative pollen or annual pollen load. Similarly, 11 (65%) of the 17 locations showed a significant increase in pollen season duration over time, increasing, on average, 0·9 days per year. Across the northern hemisphere locations analysed, annual cumulative increases in T over time were significantly associated with percentage increases in seasonal pollen load (r=0·52, p=0·034) as were annual cumulative increases in T (r=0·61, p=0·010). Similar results were observed for pollen season duration, but only for cumulative degree days (higher than the freezing point [0°C or 32°F]) for T (r=0·53, p=0·030) and T (r=0·48, p=0·05). Additionally, temporal increases in frost-free days per year were significantly correlated with increases in both pollen load (r=0·62, p=0·008) and pollen season duration (r=0·68, p=0·003) when averaged for all 17 locations. INTERPRETATION: Our findings reveal that the ongoing increase in temperature extremes (T and T) might already be contributing to extended seasonal duration and increased pollen load for multiple aeroallergenic pollen taxa in diverse locations across the northern hemisphere. This study, done across multiple continents, highlights an important link between ongoing global warming and public health-one that could be exacerbated as temperatures continue to increase. FUNDING: None

    Changes to Airborne Pollen Counts across Europe

    Get PDF
    A progressive global increase in the burden of allergic diseases has affected the industrialized world over the last half century and has been reported in the literature. The clinical evidence reveals a general increase in both incidence and prevalence of respiratory diseases, such as allergic rhinitis (common hay fever) and asthma. Such phenomena may be related not only to air pollution and changes in lifestyle, but also to an actual increase in airborne quantities of allergenic pollen. Experimental enhancements of carbon dioxide (CO2) have demonstrated changes in pollen amount and allergenicity, but this has rarely been shown in the wider environment. The present analysis of a continental-scale pollen data set reveals an increasing trend in the yearly amount of airborne pollen for many taxa in Europe, which is more pronounced in urban than semi-rural/rural areas. Climate change may contribute to these changes, however increased temperatures do not appear to be a major influencing factor. Instead, we suggest the anthropogenic rise of atmospheric CO2 levels may be influentia

    Heterogeneity of pollen food allergy syndrome in seven Southern European countries: The @IT.2020 multicenter study

    Get PDF
    Background Pollen food allergy syndrome (PFAS) is a frequently underdiagnosed disease due to diverse triggers, clinical presentations, and test results. This is especially relevant in geographic areas with a broad spectrum of pollen sensitization, such as Southern Europe. Objectives To elucidate similarities and differences of PFAS in nine Southern European centers and identify associated characteristics and unique markers of PFAS. Methods As part of the @IT.2020 Multicenter Study, 815 patients with seasonal allergic rhinitis (SAR), aged 10-60 years, were recruited in seven countries. They completed questionnaires regarding SAR, comorbidities, family history, and PFAS, and underwent skin prick testing (SPT) and serum IgE testing. Results Of the 815 patients, 167 (20.5%) reported PFAS reactions. Most commonly, eliciting foods were kiwi (58, 34.7%), peach (43, 25.7%), and melon (26, 15.6%). Reported reactions were mostly local (216/319, 67.7%), occurring within 5 min of contact with elicitors (209/319, 65.5%). Associated characteristics included positive IgE to at least one panallergen (profilin, PR-10, or nsLTP) (p = 0.007), maternal PFAS (OR: 3.716, p = 0.026), and asthma (OR: 1.752, p = 0.073). Between centers, heterogeneity in prevalence (Marseille: 7.5% vs. Rome: 41.4%, p < 0.001) and of clinical characteristics was apparent. Cypress played a limited role, with only 1/22 SPT mono-sensitized patients reporting a food reaction (p < 0.073). Conclusions PFAS is a frequent comorbidity in Southern European SAR patients. Significant heterogeneity of clinical characteristics in PFAS patients among the centers was observed and may be related to the different pollen sensitization patterns in each geographic area. IgE to panallergen(s), maternal PFAS, and asthma could be PFAS-associated characteristics
    • 

    corecore